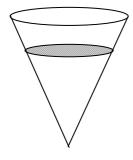
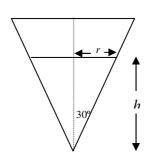
ADVANCED HIGHER MATHEMATICS UNIT 2

Outcome 1 HOMEWORK


- 1. Differentiate the following with respect to *x*:
 - a) $\sin^{-1}(\cos x)$
- b) $\ln x \cos^{-1} x$ c) $\tan^{-1} \left(\frac{2\sqrt{x}}{1-x} \right)$
- 2. If $x = t^2 \sin 3t$ and $y = t^2 \cos 3t$, find $\frac{dy}{dx}$ in terms of t, and show that the curve defined by these parametric equations is parallel to the x-axis at points where $\tan 3t = \frac{2}{2t}$.
- 3. y is a continuous function of x, defined implicitly by the equation $y^2 xy + (x^2 1) = 0$.
 - a) If y = 1 when x = 1 find y as an explicit function of x.
 - b) For what values of x is this function defined?
- 4. If $x^2 2y^2 = 2x$ find the value of
 - a) $\frac{dy}{dx}$ b) $\frac{d^2y}{dx^2}$, at the point (4,2)
- 5. Differentiate the following with respect to x:
 - a) $y = 5^x$


- b) $\frac{x(1+x^2)^3}{(1+x^3)^{\frac{1}{3}}}$
- 6. Find the Cartesian equation of the curves that are defined parametrically by
 - $x = 2\sin\theta$, $y = \cos^2\theta$ b) x = t(t-1), y = 1+t
- 7. A curve is given by the parametric equations:

$$x = \frac{(1-t)}{(1+t)}, \ y = (1-t)(1+t)^2$$

- a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t
- b) Find the equation of the tangent to the curve at the point where t = 2.
- 8. The volume, V, of a sphere of radius r, is $\frac{4\pi r^3}{3}$ and the surface area, A, is $4\pi r^2$. The volume is increasing at a steady rate of $3\text{cm}^3/\text{s}$.
 - a) Find $\frac{dr}{dt}$, where t is the time in seconds.
 - b) Calculate the value of $\frac{dA}{dt}$ in cm²/s at the instant when the radius is 12cm.
- 9. A cannon is fired horizontally from the top of a cliff. The cannonball lands 180m from the base of the cliff. If the cannonball is projected from a point 125m above the ground then x = ut and $y = -5t^2$ where u is the initial velocity and x and y metres the horizontal and vertical distances of the stone from the point of projection at time t. Find
 - a) the time of flight,
 - b) the initial velocity,
 - c) the speed at which the cannonball hits its target.
- 10. Water pours into a conical tank of semi vertical angle 30° at the rate of $4 \text{cm}^3/\text{s}$, where h is the depth of the water at time t.

At what rate is the water rising in the tank when h = 10 cm?

